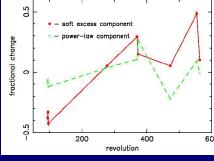

XMM-Newton observations of 3C 273


Kim Page^a, Martin Turner^a, Chris Done^b, Paul O'Brien^a, James Reeves^c, Steve Sembay^a and Martin Stuhlinger^d

^a University of Leicester, UK; ^b University of Durham, UK; ^c NASA Goddard Space Flight Center, USA;

^d Institut für Astronomie und Astrophysik, Tübingen, Germany

Nine XMM-Newton observations of the radio-loud quasar 3C 273 (z = 0.158) are investigated. The broad-band X-ray spectra can be fitted with a power-law and multiple blackbody components, or with a double Comptonisation model; both the power-law and soft excess components are found to vary over time, with the soft excess being hotter when brighter. Co-adding all nine spectra reveals a weak, broad iron line.

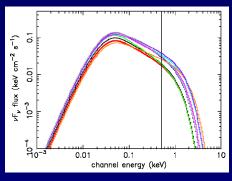


FIG. 1. The soft excess of 3C 273.

FIG. 2. Variation in strength of soft excess and power-law.

FIG. 3. Comptonised soft excess components for all 9 observations, extrpolated down to low energies.

MOS 2 and PN spectra were jointly modelled to analyse the soft excess of 3C 273 (Fig. 1). Over 0.5-10 keV, the spectra were well represented by either a power-law (Γ ~1.6-1.8) and 2 or 3 blackbodies (kT~40-330 eV) or a double Comptonisation model (kT~300-400 eV). The strength of the soft excess varies more strongly over time than that of the power-law (Fig. 2).

The observations cover a 0.5-10 keV luminosity range of $1-2 \times 10^{46}$ erg s⁻¹.

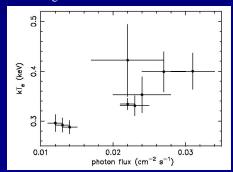
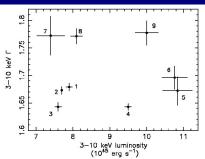
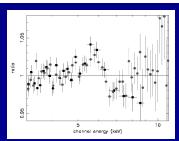


FIG. 4. The soft excess component is hotter when brighter.


The hotter soft excess components are found to be brighter (Fig. 4); this is inconsistent with Compton cooling, since that theory implies an increase of input photons should cool the Comptonising corona.

References:

Fang, T., Sembach, K.R., Canizares, C.R., 2003, ApJ, 586, L49 Page, K.L. et al., 2004, MNRAS, in press


Rasmussen A., Kahn, S.M., Paerels, F., 2003, astro-ph/0301183

Because the input photons to the Comptonisation model are thought to come from the accretion disc directly, they are much cooler than the energetic electrons. Thus, the whole model extends well below the XMM-Newton energy band of ~0.5-10 keV. Figure 3 plots an over-lay of the soft excess components from each revolution extrapolated to ~1 eV. The vertical line shows the point above which the model was fitted.

The 3-10 keV power-law slope varies between Γ ~1.6-1.8, but does not appear to be correlated with luminosity (Fig. 5). There is a suggestion that 3C 273 exists in 2 different 'hardness states'.

FIG. 5. The power-law slope changes over time. The numbers in this plot show the order in which the observation measurements were taken.

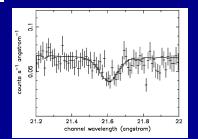


FIG. 6 (above left). Co-adding all 9 observations reveals an emission feature in the 3-10 keV residuals. This is well fitted with a broad line of $E_{line}{\sim}6.4$ keV, $\sigma{\sim}0.6$ keV and equivalent width ${\sim}56$ eV.

FIG. 7 (above right). The RGS spectra reveal absorption probably due to O VII He α at zero-redshift. This is in agreement with the findings of Fang, Sembach & Canizares (2003) and Rasnussen, Kahn & Paerels (2003).