GRB 0061121:

Broad-band spectral evolution through the
prompt and afterglow phases of a bright burst

Kim Page

(and many, many other¢ ¢

# & University of

¥ Leicester



Observations

Swift
Konus-Wind
RHESSI - e -
XMM-Newton - =
VLA
ROTSE llla
Faulkes Telescope Nort
Kanata 1.5-m
'Jniversity of Miyazaki 30-cm
MDM
P60
CrAO
SMARTS/ANDICAM
Keck

# & University of

" Leicester



S Swift and Konus

arbitrary court rate

Swift triggered on a
precursor, so the NFIs were

on target by the time of the
e M 1 main burst. The precursor
sy e was detected over all

o 0.3-2 keV

main)

P
e

360-1360 keV

~ 7.7 s (just precursor)

t t t T t t t t 1
211360 kel
[waiting mode)

T e— R ——— ~ 18.2 s (just main
4] 50 100 150 pulse)

oy M" prpeey i gamma-ray bands, and the

- Mk i optical, X-rays and

AR MT T T4 gamma-rays all tracked the

e W NS . peak, about 75 s after the

trigger.

AT i Long burst:

AR u«'t — Ty, ~ 81 s (precursor and
A

time since BAT trigger (5]

# @ University of

5 Leicester



5 Previous Observations of the
*’l Prompt Emission
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N7 BAT

Spectral evolution occurs
throughout the main burst.

BAT GR {15150 ke¥)

The gamma-ray emission is
harder when brighter. The blue
points show the precursor data,
which are consistent with the
relationship for the main burst.
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N7 Lags and ACF

As is usual for long bursts,
the harder data lead the

softer by a short time span. - ==~ | | 14 KoV 25-50 ke -
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The autocorrelation function shows that the peaks in the
emission are narrower at higher energies.
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N7 Precursor Emission

Precursors are not well understood, though there are a number of
theories, including:

* Fireball interacting with massive progenitor?
Spectra should be thermal. (Ramirez-Ruiz et al. 2002)
* Jet breakout of stellar surface?

How could this also cause later, postcursor emission?
(Ramirez-Ruiz et al. 2002; Lazzati et al. 2007)

* Deceleration of faster front shells, so that slower ones catch up and
collide?

(Fenimore & Ramirez-Ruiz 1999; Uemeda et al. 2005)

* Continuing activity of the central engine - as for flares?

Conclusion: can’t decide from the data for this burst.
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N7 Flux density Light-Curves
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i/l Spectral Energy Distribution
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N7 Afterglow Emission - 1

The “standard” afterglow model closure relations (e.g. Zhang &

Mészaros 2004) don’t fit all “segments” of the broken power-law
model.

From O’Brien et al. (2006) and Willingale et al. (in press), one or two
exponential-to-power-law models can be used to fit the entire

=1 f,_,(t]:FEemj(ﬂ:E—tme)e:{p(_Tn),t{T,:
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t T —t,
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4 The transition from exponential to
power-law occurs at (T,F.), where the
4 functional sections have the same
value/gradient. t_ is the time of the initial
rise.
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N7 Afterglow Emission - 2

This functional form was applied to the X-ray, UVOT and
combined R-band data.

The X-ray data show the “roll over” to the final decay,
whereas the optical decay is established earlier - no
“plateau” is seen in the UVOT or ROTSE data.

In the X-ray and V-band cases, the decay is slower than
expected from the closure relations obtained from the
measured spectral parameters. Both bands are in best
agreement with being below the cooling frequency.
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N7 Afterglow Emission - 3

Over time, the spectra appear to be hardening:

 R-band decays faster than V-band (a;, ~ 0.84, cf. a,, ~ 0.66), so the
optical spectral index becomes harder

* X-ray spectral index appears to harden from ' ~ 2.1 to ~1.9 round
about 32 ks.

Such spectral hardening from the “plateau” to the final decay is a
feature of many X-ray afterglows (Willingale et al. 2007).

Possible explanation: Synchrotron Self-Comptonisation.

The surrounding density would need to be very high, though:5 x 103 to
105 cm=3 This is similar to that found in the core of a molecular cloud.

Might therefore expect greater reddening than that estimated from the
UVOT data (A, = 1), but dust destruction can occur (e.e Waxman &

Draine 2000).
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N7 Still to be understood...

* What causes precursors?

* The SEDs show a break between the optical and
X-ray bands, but both seem to be below the cooling
frequency. What is the origin of this break?

* The X-ray and optical spectra harden over time.
What causes this hardening? Did the burst go off in
the core of a molecular cloud?
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