
Lecture 3: some more complexity 
In this lecture we consider quantum mechanics applied to more complicated potentials. 

Reminder: http://www.star.le.ac.uk/nrt3/QM/ 



Finite potential well 
If the energy of a state is less than the height of the well, then the solutions look similar to the infinite 
well.   In this case the wave-functions penetrate the walls and decay exponentially.  These solutions can 
be found by solving the Schrodinger equation in each region (take origin at centre of well!). 
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Finite potential well 

α = k tan(kL / 2)

Symmetry implies  C = D  and  A = 0.   

Fix all the constant coefficients by normalising and enforcing continuity and differentiability at the well 
boundaries.  For example, consider just the symmetrical (odd n) cases. 

Dividing gives:  

ψ(L / 2)− =ψ(L / 2)+ ⇒ Bcos(kL / 2) =C

!ψ (L / 2)− = !ψ (L / 2)+ ⇒ −Bk sin(kL / 2) = −αC

Hence allowed (quantised) energy levels are those which obey this constraint.   

⇒ U0 −E = E tan
2 L mE

2!2
#

$
%

&

'
(



The Harmonic Oscillator 
Another relatively simple system, which approximates many real world situations, is the 
harmonic oscillator, in which the potential is parabolic (cf. mass on spring). Thus the 
Schrodinger equation becomes: 

Thus we must have: 
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In this situation the energy levels are simply separated by a constant difference.  Consider a 
(ground-state) solution of a Gaussian form: 
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ψ(x) = Ce−ax
2 / 2

Differentiating twice and putting back in the Schrodinger equation we find: 
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The Harmonic Oscillator 
It turns out that the (more complicated) higher energy solutions have regularly spaced energy 
levels: 



The Harmonic Oscillator 
For example, the first excited state is: 

ψ(x) = Dxe−ax
2 /2

Thus, as claimed: 

Differentiating twice and putting back in the Schrodinger equation we find: 
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Example 
A particular potential produces a wavefunction of the following form: 

ψ(x) = k(x − x2 ); 0 < x <1, 0 elsewhere

Steps: first normalise to find k, then find expectation.  

Find expectation value for position. 


