Atoms and Nuclei PA 322

Lecture 7

Unit 1: Recap Unit 2: Spectrum of the Helium atom

Nial Tanvir (nrt3@le.ac.uk)

Lecture notes

• Available at:

http://www.star.le.ac.uk/~nrt3/322

Terminology: Quantum Numbers

Quantum no.	Name	Allowed values for electron	Amplitudes	
n	principal	any +ve integer: 1 … ∞		
l	orbital angular momentum	<i>l</i> =0, 1, <i>n</i> -1	$\left \mathbf{l}\right = \sqrt{l(l+1)}\hbar$	
S	spin	s=1/2	$\left \mathbf{s}\right = \sqrt{s(s+1)}\hbar$	$m_{l} = 2 \hbar \left[\begin{array}{c} l = 2 \\ L = \sqrt{2(2+1)} \hbar \\ \dots \\$
m_l	orbital magnetic	$m_l = -l, \dots +l$ (integer steps)	$l_z = m_l \hbar$	1 n
m _s	spin magnetic	$m_s = \pm s$ $= \pm 1/2$	$s_z = m_s \hbar$	0 -1th
j	total angular momentum	$j = l - s \dots (l + s)$ (integer steps) $j = l \pm 1/2 \text{ for single electron}$	$\left \mathbf{j}\right = \sqrt{j(j+1)}\hbar$	-2 1
m _j	total angular momentum projection	$m_j = -j, \dots +j$ (integer steps)	$j_z = m_j \hbar$	

Terminology: shells, subshells etc.

Concept	Related quantum numbers	Notes
shell	n	all levels with same <i>n</i> belong to the same shell
sub-shell	n, l	all levels with the same <i>n</i> , <i>l</i> belong to the same sub-shell

Also

term: configuration with specific (n, l, s) split into levels with different j

Alternative notation for shells

For convenience & brevity, the **shells** are sometimes specified by an upper-case letter

value of <i>n</i>		2	3	4	5	6	7
letter code for shell	Κ	L	Μ	Ν	0	Ρ	Q

Use particularly in context of X-ray spectra (For example one might see expressions like *K-shell photoelectric absorption edge...*)

Terminology: notation for subshells

The configuration of the N equivalent electrons in a given sub-shell is usually written as

where

• *n* is the principal quantum number (a positive integer, as above)

• *l* is a letter used to specify the value of the orbital angular

momentum quantum number (allowed values l = 0, 1, ..., n - 1)

value of <i>l</i>	0	1	2	3	4	5	6	7	8
letter code	S	p	d	f	g	h	1	k	1

The superscript value for N is often omitted if N = 1.

Terminology: notation for *terms*

The combination of quantum numbers for a specific configuration of optically active electron(s) can be written as a *spectroscopic term symbol* :

$$^{2S+1}L_J$$
 e.g. $^{2}P_{3/2}$

where

- *S* is the spin quantum number & (2S+1) is the spin multiplicity (=2 for a single electron \Rightarrow called 'doublet')
- L is the letter used to specify the value of the orbital angular momentum quantum number (in upper case)
- J is the total angular momentum quantum number

Important concepts for multi-electron atoms

- Need to work out how spin and orbital angular momenta couple together for multiple optically active electrons. Two approximation schemes are used for different situations:
 - LS coupling: coupling between *combined* orbital and spin angular momenta $\mathbf{L} = \Sigma \mathbf{l}_i$; $\mathbf{S} = \Sigma \mathbf{s}_i$; $\mathbf{J} = \mathbf{L} + \mathbf{S}$ (vector sums)
 - strong electron-electron interactions 'break' individual spinorbit coupling
 - *j*-*j* coupling: strong spin-orbit coupling of individual electrons, net combined angular momenta couple $\mathbf{J} = \Sigma \mathbf{j}_i$

- LS coupling dominates for low Z elements (and for low n orbitals)

Helium

- Basic facts
 - Helium discovered as element late (1868) first detected in spectrum of Sun (hence name)
 - not isolated as terrestrial element in 1895 second lightest element
 - optical spectrum difficult to understand:
 - two distinct families of lines (but not two different elements!)

Spectrum of the Helium atom

- Context
 - atoms considered in Unit 1: hydrogen, hydrogenic species, alkali metals
 - all had *single* electron in outer shell
 - outermost electron essentially independent of inner electrons in their closed shells
 - magnetic moments from orbital and spin angular momenta in closed shells cancel out
 - but we now know helium has $1s^2$ configuration, i.e. two (potentially active) electrons in outer shell
 - \Rightarrow more complexity \Rightarrow introduction to multi-electron atoms

Important concepts for helium

• Energy state for electrons in helium:

$$E = E(n,l) + E_{so} + E_{opt.el.}$$

binding to spin-orbit coupling binding to coupling to coupling the electron interactions (electrostatic)

• In fact, here we will mainly be concerned with the splitting of energy levels and their relative positioning.

Total spin angular momentum

- *Total* spin angular momentum in helium
 - two electrons in ground state must have m_s = +1/2 and m_s =- 1/2 (Pauli Exclusion Principle)
 - in ground configuration spins paired, i.e. anti-parallel and resultant magnetic moment is zero
 - excited states (e.g. 1s2s ...) can have spins parallel or anti-parallel
 - parallel spins: triplet states
 - anti-parallel spins: singlet states

Total spin angular momentum (for helium)

- Must consider total spin angular momentum $S = s_1 + s_2$ (vector sum)
- Related *total* spin angular momentum *quantum number S*:
 - amplitude of spin vector $|\mathbf{S}| = [S(S+1)]^{\frac{1}{2}}\hbar$
- In case of 2 electrons in helium possibilities are

 $-s_1 = s_2 = \frac{1}{2} \implies S = 0$ or S = 1

- total spin angular momentum has 2S+1 quantised components characterised by quantum number $m_S = -S, \dots +S$
 - for S = 0 single component (2S+1=1) hence singlet state
 - for S = 1 three components (2S+1=3) hence *triplet* state

Energy difference between singlet and triplet states

- Singlet and triplet states have different energies because the electrons in these states have different spatial distributions
 - crudely speaking triplet states have *lower* energies because electrons are "more separated": lower probability of being in close proximity (recall electrostatic repulsion $\propto 1/r^2$)
 - full QM treatment in terms of *Coulomb* and *exchange* integrals provides this result

Transitions in helium

- Consider transitions involving just one electron
- Absorption (usually from ground state): $1snl \leftarrow 1s^2$ (e.g. $1s \ 2p \leftarrow 1s^2$)
- Emission: $nl n'l' \rightarrow nl n''l''$ (i.e. between arbitrary excited states)
- Selection rules: $\Delta n = any$; $\Delta l = \pm 1$; $\Delta S = 0$

 \Rightarrow transitions between singlet and triplet states are forbidden

- Implications:
 - absorption lines are all between singlet states (as ground state is singlet state)
 - emission lines (e.g. from discharge tube which populates various excited states): two distinct sets of lines corresponding to
 - singlet ↔ singlet states
 - triplet \leftrightarrow triplet states

Spin-orbit coupling (revisited) for helium (L-S coupling)

- Orbital angular momenta of electrons coupled as for spin angular momenta
- Total orbital angular momentum $\mathbf{L} = \mathbf{l}_1 + \mathbf{l}_2$ (vector sum)
- For helium with one electron in 1s subshell:
 - $\mathbf{l_1} = 0$ and thus $\mathbf{L} = \mathbf{l_2}$
 - only excited electron can (potentially) contribute to total angular momentum
- Spin-orbit coupling in helium involves coupling of *total* spin angular momentum with *total* spin angular momentum, ie. S with L
 - for singlet states with S = 0 no spin-orbit coupling
 - for triplet states coupling to produce total angular momentum $\mathbf{J} = \mathbf{L} + \mathbf{S}$

Vector sums revisited

- How do we combine the *quantum numbers* where the corresponding *vectors* are combined in a vector sum?
 - eg. sum of orbital angular momenta

 $\mathbf{L} = \mathbf{l}_1 + \mathbf{l}_2$

• **Rule** is that the corresponding *quantum number L* can take values

 $L = l_1 + l_2 \dots |l_1 - l_2|$

• For example consider case where *quantum numbers* are $l_1 = 1$ and $l_2 = 2$

- in this case the rule gives L = 3, 2, 1

• Rule applies to any quantised vector sum combination

Spin-orbit coupling (revisited) for helium

• For triplet states (S = 1) possible values of quantum number J are

J = L+1, L, L-1 [cf. J = L + S, L + S-1, ... |L - S|] and each J state is (2J+1)-fold degenerate according to value of m_J

(total angular momentum projection quantum number)

- Example: 1snp states
 - $L = 1 (l_1 = 0 l_2 = 1)$
 - J = 2, 1, 0
 - Term symbols: ${}^{3}P_{2}$, ${}^{3}P_{1}$, ${}^{3}P_{0}$
- Example: 1snd states
 - $L = 2 (l_1 = 0 l_2 = 2)$
 - -J=3,2,1
 - Term symbols: ${}^{3}D_{3}$, ${}^{3}D_{2}$, ${}^{3}D_{1}$
- $E_{so} = \frac{1}{2} A [J(J+1)-L(L+1)-S(S+1)]\hbar c$ (cf. earlier version, but with much smaller constant)

Reading

- Helium atom
 - <u>Softley</u> Chapter 4: mostly sections 4.1-4.3
- Previous concepts
 - spin-orbit coupling
 - previous lectures
 - <u>Softley</u> Section 2.10