Atoms and Nuclei PA 322

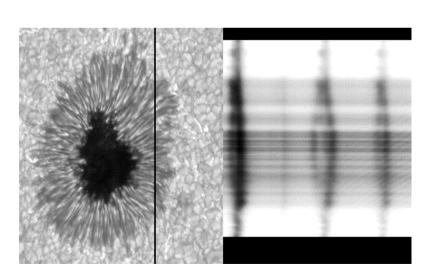
Lecture 9

Unit 2: Zeeman Effect (revisited) Paschen-Back Effect

(Reminder: http://www.star.le.ac.uk/~nrt3/322)

Topics

- Atom in magnetic field
 - Zeeman Effect: weak field
 - "normal" and "anomalous"
 - magnitude of effect
 - other cases
 - intermediate field: Paschen-Back Effect
 - very strong field



Zeeman Effect

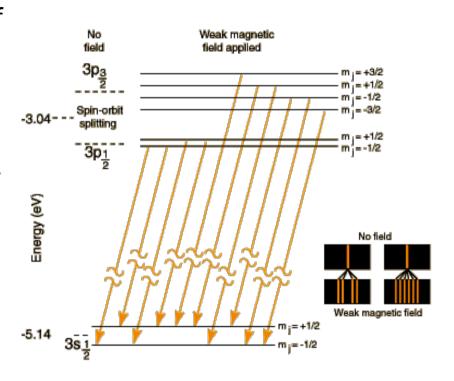
- Atom interacts with external magnetic field as there are intrinsic (internal) magnetic moments associated with:
 - electron orbit and electron spin
- Produces energy splitting of levels that are otherwise degenerate: $m_{
 m J}$ states
 - and thus splitting of spectral lines to/from relevant levels
 - in typical laboratory magnetic fields the size of the energy splitting due to the external field is small compared with all internal energy splittings

e.g.
$$E_{\rm mag} << E_{\rm so} << E_{\rm spin-spin}$$

- equivalently the effective internal magnetic field relating to electron magnetic moment interaction >> external field values
- amplitude of splitting \propto |*B*|

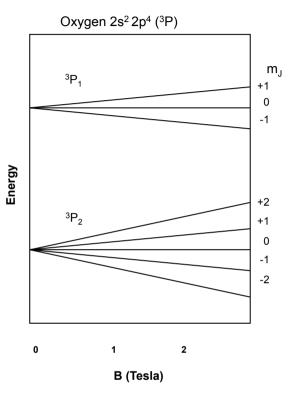
Zeeman Effect

- Normal Zeeman effect: splitting of singlet states (S=0) – can be understood classically
- Anomalous Zeeman effect: splitting of S≠ 0 states, specifically where spin-orbit coupling is occurring
 - normal Zeeman effect is thus just a special case, in fact.
 - However, when Normal Zeeman effect applies, the line patterns are much simpler.



- Normal: number of Zeeman split lines = 3
 independent of number of transitions
- Anomalous: number of Zeeman split lines ≤ number of transitions

- Interaction with B field splits levels according to $m_{\rm J}$ (specifying orientations of ${\bf J}$)
- Need to calculate is the interaction energy between the effective magnetic moment of the atom μ and the external field B



• Interaction energy $E_{\rm mag}$ is given by

$$E_{\text{mag}} = -\mathbf{\mu} \cdot \mathbf{B}$$

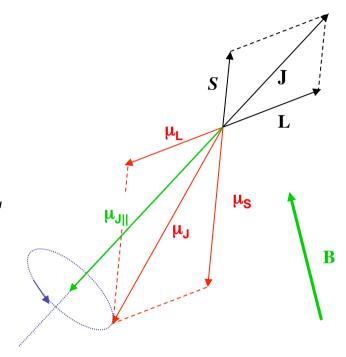
where $\mu = \mu_{J_{\parallel}}$ is the component of μ which is antiparallel to J (surprisingly μ not in same direction as -J)

• The only tricky bit is calculating $\mu_{J_{\perp}}$

PA322

Lecture 9

- Assume L-S coupling in multi-electron atom
 - J = L + S (L & S precess about J)
- Orbital magnetic moment: $\mu_{\mathbf{L}} = -g_l \left(\frac{e}{2m_e}\right) \mathbf{L}$ • Spin magnetic moment: $\mu_{\mathbf{S}} = -g_s \left(\frac{e}{2m_e}\right) \mathbf{S}$
- Spin magnetic moment: $\mu_{\mathbf{S}} = -g_s \left(\frac{e}{2m_e}\right) \mathbf{S}$ where g_l and g_s are the orbital and spin gfactors $g_l = 1$; $g_s = 2$



• Total magnetic moment $\mu_{\mathbf{J}} = -\left(\frac{e}{2m_e}\right) \left[g_l \mathbf{L} + g_s \mathbf{S}\right] = -\left(\frac{e}{2m_e}\right) \left[\mathbf{L} + 2\mathbf{S}\right]$ confirming that $\hat{\mu}_{\mathbf{J}} \& \hat{\mathbf{J}}$ are *not anti-parallel*: $\mu_{\mathbf{J}}$ precesses about \mathbf{J}

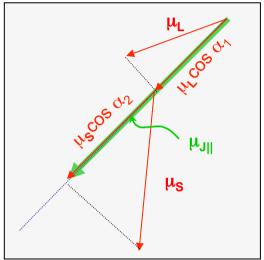
• Computing $\mu_{J_{\parallel}}$

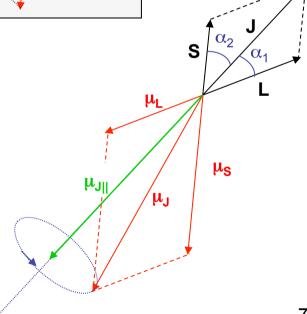
$$\left|\mu_{\mathbf{J}_{\parallel}}\right| = \left|\mu_{\mathbf{L}}\right| \cos \alpha_{1} + \left|\mu_{\mathbf{S}}\right| \cos \alpha_{2}$$

where angles defined in triangles

$$\cos \alpha_1 = \frac{|\mathbf{L}|^2 + |\mathbf{J}|^2 - |\mathbf{S}|^2}{2|\mathbf{J}||\mathbf{L}|} \cos \alpha_2 = \frac{|\mathbf{J}|^2 + |\mathbf{S}|^2 - |\mathbf{L}|^2}{2|\mathbf{J}||\mathbf{S}|}$$

(Cosine rule)





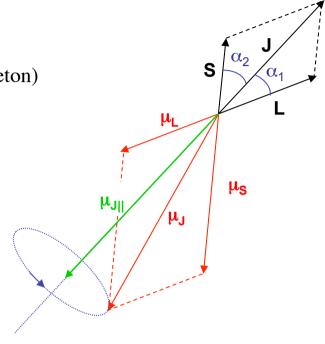
So substituting

$$\left|\mathbf{\mu}_{\mathbf{L}}\right| = -\left(\frac{e}{2m_e}\right)\left|\mathbf{L}\right| \qquad \left|\mathbf{\mu}_{\mathbf{S}}\right| = -2\left(\frac{e}{2m_e}\right)\left|\mathbf{S}\right| \qquad \mu_B = \frac{e\hbar}{2m_e} \quad \text{(Bohr Magneton)}$$

we get

$$\begin{aligned} \left| \boldsymbol{\mu}_{\mathbf{J}_{\parallel}} \right| &= -\frac{\mu_{B}}{\hbar} \left\{ \left| \mathbf{L} \right| \left[\frac{\left| \mathbf{L} \right|^{2} + \left| \mathbf{J} \right|^{2} - \left| \mathbf{S} \right|^{2}}{2 \left| \mathbf{J} \right| \left| \mathbf{L} \right|} \right] + 2 \left| \mathbf{S} \right| \left[\frac{\left| \mathbf{J} \right|^{2} + \left| \mathbf{S} \right|^{2} - \left| \mathbf{L} \right|^{2}}{2 \left| \mathbf{J} \right| \left| \mathbf{S} \right|} \right] \right\} \\ \left| \boldsymbol{\mu}_{\mathbf{J}_{\parallel}} \right| &= -\frac{\mu_{B}}{\hbar} \left[\frac{3 \left| \mathbf{J} \right|^{2} + \left| \mathbf{S} \right|^{2} - \left| \mathbf{L} \right|^{2}}{2 \left| \mathbf{J} \right|} \right] = -\frac{\mu_{B}}{\hbar} \left| \mathbf{J} \right| \left[1 + \frac{\left| \mathbf{J} \right|^{2} + \left| \mathbf{S} \right|^{2} - \left| \mathbf{L} \right|^{2}}{2 \left| \mathbf{J} \right|^{2}} \right] \end{aligned}$$

$$\left| \boldsymbol{\mu}_{\mathbf{J}_{\parallel}} \right| = -\frac{\mu_{B}}{\hbar} \left| \mathbf{J} \right| \left[1 + \frac{J(J+1) + S(S+1) - L(L+1)}{2J(J+1)} \right] = -g \frac{\mu_{B}}{\hbar} \left| \mathbf{J} \right|$$



Expression in brackets is the Landé g-factor

see Softley: p73

$$g = 1 + \frac{J(J+1) + S(S+1) - L(L+1)}{2J(J+1)}$$
since $|\mathbf{J}|^2 = J(J+1)\hbar^2$ etc.

Finally

$$E_{mag} = -\mathbf{\mu}_{\mathbf{J}_{\parallel}} \cdot \mathbf{B}$$

substitute value of $\mu_{J_{\parallel}}$

$$E_{mag} = \frac{g\mu_B}{\hbar} \mathbf{J} \cdot \mathbf{B}$$

(since
$$\hat{\boldsymbol{\mu}}_{J_{\parallel}} = \frac{\boldsymbol{\mu}_{J_{\parallel}}}{\left|\boldsymbol{\mu}_{J_{\parallel}}\right|} = -\hat{\mathbf{J}} = \frac{-\mathbf{J}}{\left|\mathbf{J}\right|}$$
)

$$E_{mag} = \frac{g\mu_B}{\hbar} J_z B$$

but $J_z = m_J \hbar$ (projection of J)

$$\Rightarrow E_{mag} = g\mu_B Bm_J$$

Limiting cases:

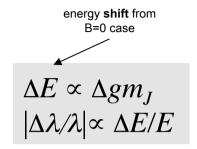
$$-S=0, L \neq 0 \implies J=L \implies g=1 \text{ (cf. } g_l)$$
$$-S\neq 0, L=0 \implies J=S \implies g=2 \text{ (cf. } g_s)$$

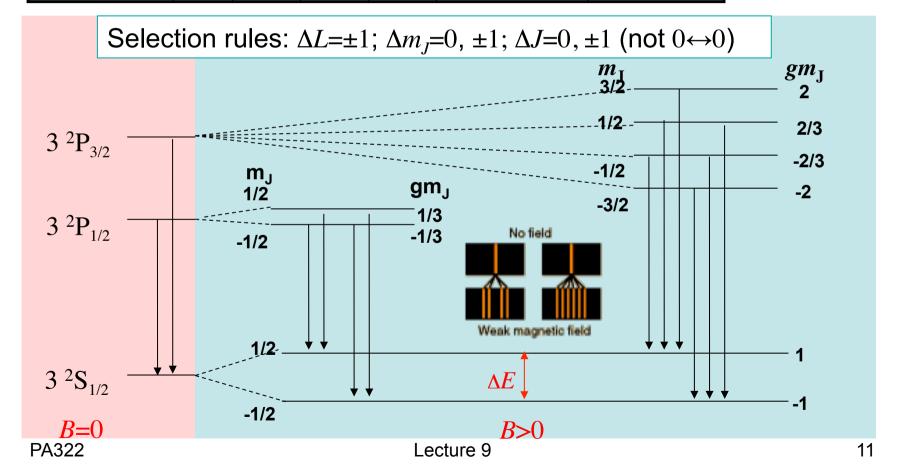
$$g = 1 + \frac{J(J+1) + S(S+1) - L(L+1)}{2J(J+1)}$$

- Normal Zeeman means S=0 and thus g=const=1
 - energy difference (ie line splitting) $\Delta E_{\rm mag}$ = μ_B Δm_J is same for all L [not true for anomalous as g=g (L,S,J)]
 - simplifies spectrum as different transitions between levels have same energy splitting
 - 3 distinct components only: corresponding to allowed Δm_1 =0, ±1

Sodium D lines in a weak (0.1 T) magnetic field

State	L	S	J	g	m_J	gm_J
$3 {}^{2}S_{1/2}$	0	1/2	1/2	2	±1/2	± 1
$3^{2}P_{1/2}$	1	1/2	1/2	2/3	±1/2	±1/3
$3^{2}P_{3/2}$	1	1/2	3/2	4/3	± 1/2; ± 3/2	± 2/3; ± 2



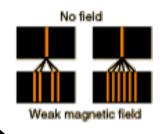


${}^{2}S_{1/2}$ (g=2)			P _{1/2}	$\begin{array}{c} \Delta g m_J \\ = g m_{J1} - g m_{J2} \end{array}$
m_J	$\frac{-2}{gm_J}$	m_J	$\frac{(2/3)}{gm_J}$, S ^M J[S ^M J2
1/2	1	1/2	1/3	4/3
/2	1	-1/2	-1/3	2/3
1/	-1	1/2	1/3	-2/3
-1/2	- 1	-1/2	-1/3	-4/3

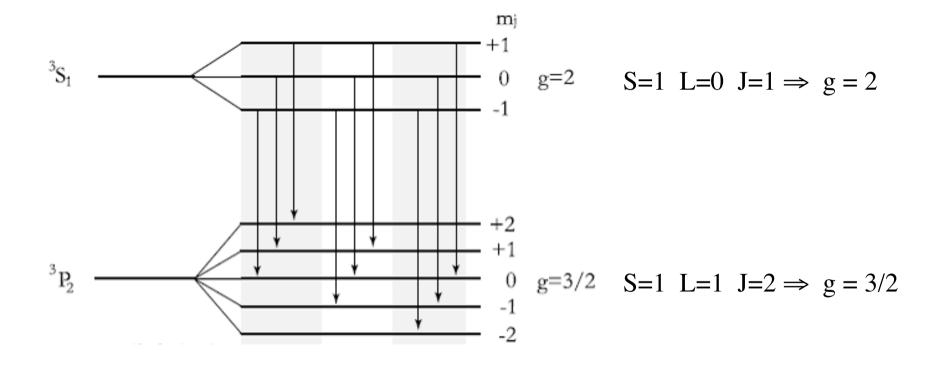
$^{2}S_{1/2}$ (g=2)			2 _{3/2} :4/3)	Δgm_J = gm_{J1} - gm_{J2}
m_J	gm_J	m_J	gm_J	
		3/2	2	-1
1/2	1	1/2	2/3	1/3
		-1/2	-2/3	5/3
		1/2	2/3	-5/3
-1/2	-1	-1/2	-2/3	-1/3
		-3/2	-2	1

 $\Delta E \propto \Delta g m_{\rm J}$ $|\Delta \lambda / \lambda| \propto \Delta E / E$

4 distinct components



6 distinct components



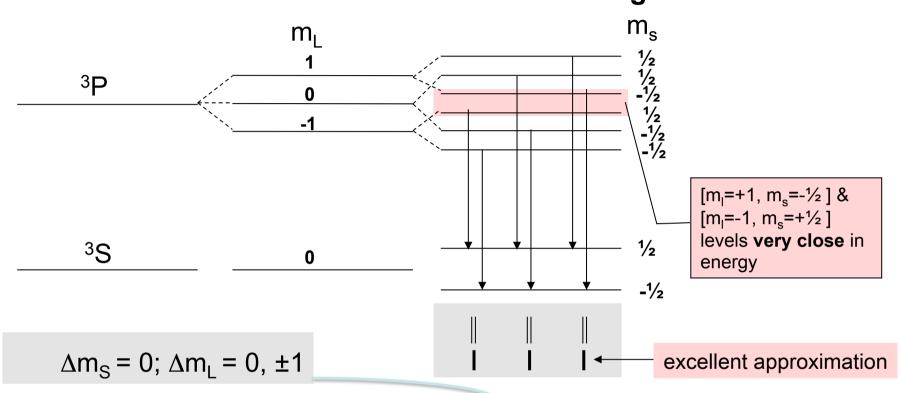
Paschen-Back Effect E_{mag} ~ E_{so}

- Zeeman effect assumes $E_{\rm mag}$ << $E_{\rm so}$
- If $E_{\rm mag} \sim E_{\rm so} \Rightarrow$ Paschen-Back Effect
 - spin-orbit coupling broken
 - L & S precess independently about B

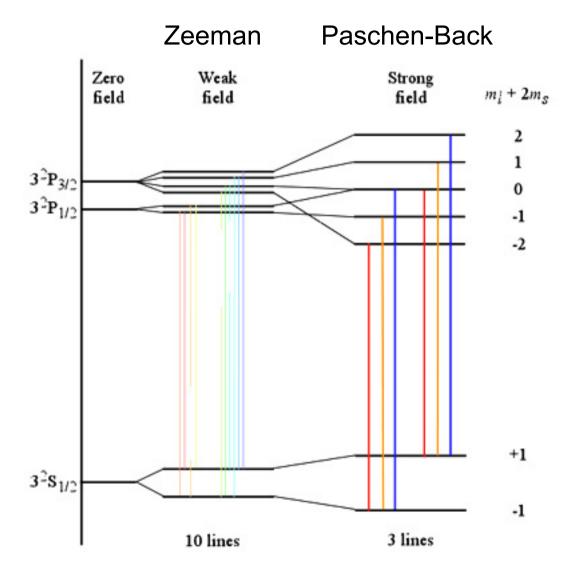
$$E_{mag} = -\mu_{\mathbf{L}} \cdot \mathbf{B} - \mu_{\mathbf{S}} \cdot \mathbf{B} = (m_L + 2m_S)\mu_B B$$

- $m_{\rm L}$ and $m_{\rm S}$ are now good quantum numbers again
- selection rules for transitions: $\Delta m_{\rm S}$ = 0; $\Delta m_{\rm L}$ = 0, ±1
 - produces lines very similar normal to Zeeman effect

Paschen-Back Effect E_{mag} ~ E_{so}



State	L	S	m_L	$m_{\mathbb{S}}$	m_L +2 m_S	$\Delta(m_L+2m_S) \propto \Delta E$
3 ² S _{1/2}	0	1/2	0	-1/2, +1/2	±1	
3 ² P _{1/2}	1	1/2	-1,0,1	-1/2, +1/2	-2,-1,0,1,2	-1,0,1
3 ² P _{3/2}	1	1/2	-1,0,1	-1/2, +1/2	-2,-1,0,1,2	



Paschen-Back Effect

• Estimate of *B* for Paschen-Back effect to be important

$$\Delta E_{\rm mag,Zeeman} = \Delta (gm_J) \mu_B B$$

 $\Delta E_{\rm so} \approx 2 \text{ meV (e.g. for Sodium resonance lines)}$
 $\Delta E_{\rm mag,Zeeman} \approx \Delta E_{so}$

as
$$\Delta (gm_J)_{\text{max}} \approx 3$$
 and $\mu_B = 5.8 \times 10^{-5} \,\text{eV} \,\text{T}^{-1}$
 $\Rightarrow B \approx 10 \,\text{T}$

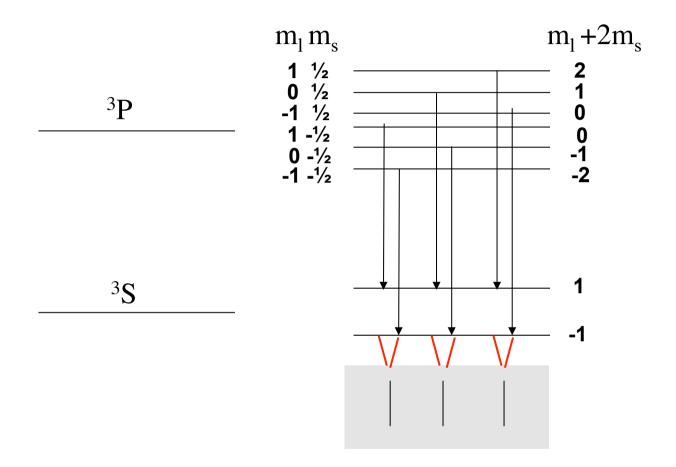
Extreme B fields $E_{mag} >> E_{so}$

• For large enough ${\bf B}$ spin-spin and orbit-orbit coupling of electrons broken, leading to effective j-j coupling

$$E_{mag} = (m_L + 2m_S)\mu_B B$$

• Selection rules now $\Delta l = \pm 1$; $\Delta m_J = 0$; $\Delta m_l = 0, \pm 1$

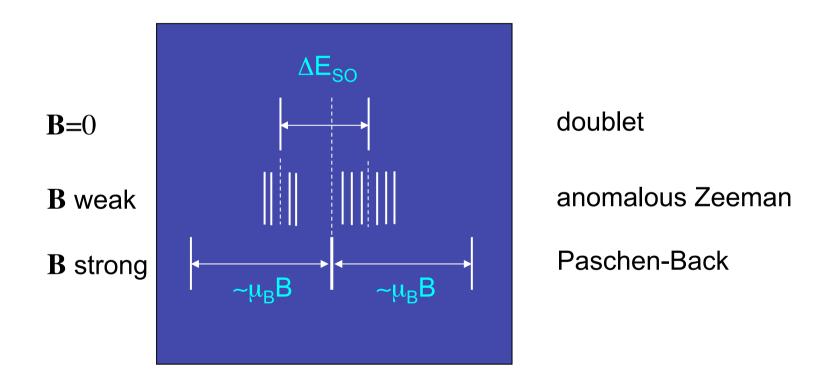
Extreme B fields $E_{mag} >> E_{so}$



Six transitions give three lines due to degeneracy as splitting $\propto (m_l + 2m_s)$

Summary

Summary of effects for typical lines (e.g. Na D lines):



Reading

- Previous lecture notes (intro to Zeeman effect)
- Softley Chapter 5, sections 5.4 & 5.5 (skip Stark effect)