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Terminology: Quantum Numbers 
Quantum no. Name Allowed values Amplitudes 

n principal any +ve integer: 1 … ∞ 

l orbital 
angular 
momentum 

l=0, 1, …n-1 

s spin  s=1/2 

ml orbital 
magnetic 

ml = -l, … +l 
(integer steps) 

ms spin 
magnetic 

ms= ± s  
     = ± 1/2 

j total angular 
momentum 

j = | l - s | … (l + s) 

(integer steps) 
j = l ±1/2 for single electron 

mj total angular 
momentum 
projection 

mj = -j, … +j 
(integer steps) 

  

€ 

l = l(l +1)

sz ms =

)1( += jjj

lz ml =

jz mj =

  

€ 

s = s(s+1)
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Terminology:  
notation for subshells 

The configuration of the N equivalent electrons in a given sub-shell is 
written as  

n l N  

where 
•  n is principal quantum number (a positive integer)  
•  l specifies orbital angular momentum quantum number (allowed 
values l = 0, 1, ..., n -1)  

value of l  0  1  2  3  4  5  6  7  8  
letter code l  s  p  d  f  g  h  i  k  l  

3p6  eg 
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Terminology:  
notation for terms 

Specific configuration of (usually multiple) optically active electron(s), 
the spectroscopic term symbol, is written as: 

2S+1 LJ 
2P3/2  eg 

where 
•  S is spin quantum number & (2S+1) is spin multiplicity (=2 for a single 
electron ⇒ called ‘doublet’) 
•  L specifies overall orbital angular momentum quantum number (in upper 
case) 
•  J is total angular momentum quantum number: J = |L-S| … (L+S)  
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Multiple electron atoms 

•  Filled shells can be largely ignored and we are left to deal with the optically 
active electrons in the outer shell(s).   

•  If there is only one outer electron, then behaviour is very analogous to H.   

•  Energy state for electrons in helium: 

binding to  
nucleus 

(Schr. eqn.) 

E   =    E(n,l)     +     Eso     +      Eopt.el. 

spin-orbit  
coupling 

electron 
interactions 

(electrostatic) 
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Total spin angular momentum 
•  Total spin angular momentum in helium 

–  two electrons in ground state must have ms=
+½ and ms=- ½ (PEP) 

–  excited states (e.g. 1s2s …) can have spins 
parallel or anti-parallel 

•  parallel spins: triplet states (S=1) 
•  anti-parallel spins: singlet states (S=0) 
•  states have different energies 

–  triplet has lower energy 

1s2 

1s 

2s 

triplet singlet 



•  Consider transitions involving just one electron 

–  Selection rules forbid transitions between singlet and triplet states 

•  Hence: 
–  absorption lines are all between singlet states 

–  emission lines (e.g. from discharge tube which populates 
various excited states): two distinct sets of lines corresponding to  

•  singlet ↔singlet states 
•  triplet ↔ triplet states 

PA322 

Transitions in helium 
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Spin-orbit coupling for helium 
(L-S coupling) 

•  Spin-orbit coupling in helium involves coupling of total spin angular 
momentum with total spin angular momentum, ie. J = L + S 

–  for singlet states with S=0 – no spin-orbit coupling (J = L) 

•  For triplet states (S =1) possible values of quantum number J are 

  J = L+1, L, L-1 

and each J state is (2J+1)-fold degenerate according to value of mJ 
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1S0     
1P1      

1D2 
3S1    

3P0,1,2  
3D1,2,3 

1s2 

1s2s 

1s3s 
1s3p 1s3d 

1s2p 

1s2s 

1s3s 

1s3p 1s3d 

1s2p 

singlet                       triplet 

Grotrian diagram  
for helium 

selection rules 
ΔJ = 0, ±1 (not 0→0) 
ΔS=0; ΔL= ±1  

forbidden 

para ortho 
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Spectra of general many-electron atoms 

•  Un-paired electrons are “optically active” 

•  We considered two schemes: 
–  L-S (= Russell-Saunders) coupling, valid for low-Z species 

•  terms for non-equivalent electrons 

•  terms of equivalent electrons (same n,l) 

•  Hund’s rules for L-S coupling: predict the ground state configuration 

–  j-j coupling, valid for high-Z atoms (when spin-orbit coupling 
dominates) 
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Terms for non-equivalent electrons 
in many-electron atoms 

•  Example of 2010 paper question 2(b): 
What are the possible term symbols for an atom with a 2s 2p electronic configuration, ie. an atom 
with s and p optically active electrons?  

–  (e.g. could be an excited state of Beryllium): 
–  L = |l1-l2| … (l1+l2)     but l1=0 l2=1 ⇒ L =1, so we know the terms must all be P 
–  S = |s1-s2| … (s1+s2) ⇒ S =0, 1 since s1=s2=½ 
–  Hence only possibilities are: 

•  1P, 3P 
–  Finally, consider total J = |L-S| … (L+S)  

•  for 1P case, L=1, S=0 ⇒ J =1; so only term is    1P1 

•  for 3P case, L=1, S=1 ⇒ J =0,1,2; so possible terms are    3P0, 
3P1, 3P2 

Remember, in 
LS-approx, we

 need 

to sum up the
 l and s quan

tum 

numbers for t
he two (or m

ore) 

active electro
ns 

•  i.e. active electrons which belong to different (n,l) sub-shells. 
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Terms for equivalent electrons 
in many-electron atoms 

•  More complicated! 
•  e.g. for 2p2:  

–  We might expect terms (based on S=0,1 and L=0,1,2):  
•  3D, 1D, 3P, 1P, 3S, 1S 

•  But 3D forbidden by Exclusion Principle (both electrons would have same 
state) 

•  3S and 1P turn out not to be available due to indistinguishability of 
electrons. 
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Terms for equivalent electrons 
in many-electron atoms 

ns0 1S 

ns1 2S 

ns2 1S 

np0 1S 

np1 2P 

np2 1S, 1D 3P 

np3 2P, 2D 4S 

np4 1S, 1D 3P 

np5 2P 

np6 1S 

Possible terms for equivalent electrons 
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Hund’s rules 

Hund’s rules tell us which of the allowed terms is ground state: 

1.  state with highest spin multiplicity ⇒ Smax 

2.  if required, then take term with highest L  ⇒ Lmax 

3.  If required: 
•  lowest J has lowest energy if outermost subshell is less than half full                                                                        

⇒ Jmin if q<N/2 
•  highest J has lowest energy if outermost subshell is more than half full                                                                 

⇒ Jmax if q>N/2 
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•  For example, 2010 question 2(c): 
The possible terms for the ground state of silicon (1s22s22p63s23p2) are 1S0, 3P0,1,2 and 1D2.  
Apply Hund’s rules to determine which of these is the ground state term symbol.  

–  rule 1 selects 3P? 

–  rule 3 selects 3P0  since we are told the outermost subshell is 
less than half full (3p2) 
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j-j coupling 

•  For high Z (and high n at lower Z) the spin-orbit coupling effects 
for individual electrons become large. 

•  L-S coupling no longer valid, instead j-j coupling: 
–  j1 = l1 + s1  for electron 1 
–  j2 = l2 + s2  for electron 2 …. 
… and finally J = Σ ji 
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Zeeman Effect 

When atoms sit in an external magnetic field, energy levels affected by 
interaction with electron (orbit + spin) magnetic moment. 

•  Zeeman effect is for case of weak field. Produces energy splitting of 
levels that are otherwise degenerate: mJ states 

–  amplitude of splitting ∝ |B| 

–  Normal Zeeman effect:  
•  splitting of singlet states (S=0) – three lines 

–  Anomalous Zeeman effect:  
•  splitting of S≠0 states – lines ≤ number of transitions 
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Interaction Energy for Zeeman Effect 

S 

L 

J 

µS 

µL 

µJ 

µJ|| 

α1 

α2 

  

€ 

µ J ||
= −g µB


J

€ 

g =1+
J(J +1) + S(S +1) − L(L +1)

2J(J +1)

Where Landé g-factor 

Energy depends on magnetic moment 
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Interaction Energy for Zeeman Effect 
•  Limiting cases: 

–  S=0, L ≠ 0    ⇒  J =L  ⇒  g =1 

–  S ≠ 0, L = 0  ⇒  J =S  ⇒  g =2 

•      Normal Zeeman  means S=0 and thus g = 1 
–  energy difference ΔEmag = µB ΔmJ  is same for all L 
– 3 distinct components only: corresponding to allowed ΔmJ=0, ±1 

•      Otherwise “anomalous” Zeeman  
–  need to calculate g values for particular case. 
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3 2P3/2 

3 2P1/2 

3 2S1/2 

1/2 

-1/2 

3/2 

-3/2 

1/2 

-1/2 

mJ gmJ 
1/3 

-1/3 

1/2 

-1/2 

mJ 

1 

-1 

2 

-2 

2/3 
-2/3 

gmJ 

Selection rules: Δl=±1; ΔmJ=0, ±1; ΔJ=0, ±1 (not 0↔0) 

B=0 B>0 

State L S J g mJ gmJ 

3 2S1/2 0 1/2 1/2 2 ±1/2 ± 1 
3 2P1/2 1 1/2 1/2 2/3 ±1/2 ±1/3 

3 2P3/2 1 1/2 3/2 4/3 ± 1/2; ± 3/2 ± 2/3; ± 2 

Sodium D lines in a weak magnetic field 

ΔE ∝ ΔgmJ 

energy shift from 
B=0 case 

ΔE 

Example of anomalous Zeeman effect 
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•  Example of 2012 paper question 2(b): 

Sketch the weak-field Zeeman energy level diagram for the spectral lines arising from the 2P1/2 → 
2S1/2 transition in Sodium, and indicate the quantum numbers of each level.  

 2P1/2 

 2S1/2 

1/2 
-1/2 

1/2 

-1/2 

mJ 

B=0 B>0 

1 

0 

l 
1/2 

1/2 

s 

1/2 

1/2 

j 



PA322 

Paschen-Back Effect 

Stronger field 

 ⇒ Emag ~ Eso 

 ⇒ Paschen-Back 
Effect 

Zeeman        Paschen-Back 
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Hyperfine structure 

•  Arises due to interaction between nuclear spin angular momentum 
and the electron total angular momentum. 

–  combined spin angular momentum of nucleus called I 

•  associated nuclear spin quantum number I (0, half-integer or integer) 

•  Iz given by projection quantum number mI  which ranges from –I to +I 

–  produces small magnetic moment (typically 1/2000 of electron magnetic 
moment), hence energies involved small. 

–  Combined angular momentum F = I + J (with usual quantisation) leads to line 
splitting. 

–  largest effect for unpaired s-orbital electrons e.g. 21cm line of H 
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X-ray spectra 
X-rays, being high energy, often involve interactions with low (deep) 
energy levels in multi-electron atoms. 

•  Understand the basic features of X-ray spectra as produced by X-
ray tube: 

–  Continuum produced by bremsstrahlung process as electrons are 
accelerated via interactions with nuclei. 

–  Highest energy (smallest wavelength) corresponds to all the electron KE 
given to producing a single X-ray. 

–  Overall shape produced by summing up of many cut-off I(λ)∝ 1/λ2 spectra. 
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X-ray spectra 
–  Lines arise when electrons drop from higher shells into the “holes” created 

when a low-lying electron is knocked out of atom. 
–  Each element exhibits only a few lines, corresponding to transitions between 

particular low-lying levels (e.g. Kα corresponds to n=2 to n=1). 
–  When plotted against atomic number find Zeff ∝ √ν  (this can be understood 

due to Coulomb attraction, accounting also for shielding of nuclear charge by 
any inner electrons). 

–  Can consider in terms of the transitions of a single hole (similar to transition 
of a single electron in Alkali metals). 



Nuclear 

Scattering theory – cross-sections 
Mass spectrometer 

Nuclear force – binding energy 
Radioactivity - stability 

Semi-empirical mass formula 

PA322 
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Nuclear Physics – Basics 

Nucleus of atom is very small (~ 10-15 m) but has almost all the mass 

Atomic number Z:  
•  Z = no.of protons in nucleus 
Mass number A: 
•  A = total number of protons (Z) and 

neutrons (N) in nucleus 
 XAZ

Notation for specific nuclide or isotope:  

chemical symbol 
for element 

atomic mass  
number = N + Z 

atomic 
number = Z 

•  nuclear masses often quoted in unified mass unit designated as “u” 
–  u is defined to be 1/12 of mass-energy of an atom of 12C 
–  mass of atom also includes electrons 
–  Nucleon masses ~1u 
–  1 u = 931.502 MeV     
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Total cross sections 
Represent the effective “size” of a target particle (atom, nucleus etc.) as 
seen by an incident particle. 

•  For scattering in a thin foil rate of scattered particles R = F0  σ n A δx 
 (n is number density of target foil) 

•  Scattering by thick foil: flux decreases as particles are scattered out of beam 

F = F0 e-nσx 

F0 
R 

Area of beam or target A δx 

Cross section of scatterer σ	
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Differential cross sections 

•  Typically interested in angular distribution of 
scattering R(θ, φ) 

•  For single scattering centre,  

F 

θ	


solid angle 
δΩ	


€ 

R(θ,φ)
F

=
dσ
dΩ

€ 

dσ
dΩ

where        is the differential cross section 

€ 

RdΩ = F A nδx dΩ dσ
dΩ

€ 

σ =
dσ
dΩ∫ dΩ

For thin foil of many scattering centres: 

Integrating gets us back to total cross-section 
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Discovery of the nucleus 
 Rutherford scattering 

•  Scattering rate R(θ) into unit solid angle given by differential cross-section: 

L is target thickness 

•  We see: 
–  scattering scales  

•  with nL = number of scattering atoms per unit area 
•  with square of Z = charge of nucleus 
•  inversely with square of E = energy of alphas 

€ 

R∝ dσ
dΩ

∝
nLZ 2

E 2
1

sin4 θ
2( )

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ (Breaks down as θ0)   
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Nuclear sizes, mass and charge distribution 

•  Deviation from expected 1/E2 dependence at 
large E as the alpha particles begin to 
penetrate nucleus 
–  effect sets in at E>25 MeV 

•  Hence estimate of nuclear size R 
–  equate Coulomb potential energy at R to 

particle energy (n.b. alpha particles have 
charge Ze=2e) 

1/E2 

€ 

Eα ≈
2Ze2

4πε 0R
⇒ R =

2Ze2

4πε 0Eα

≈10−16Zm
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•  Example of 2012 paper question 3(b): 

A beam of α-particles is incident on an Au foil of thickness 0.5 mm. Using the numbers given below, 
calculate the fraction of α-particles which are transmitted through the foil.  
Number density of Au atoms in the foil n = 5.9 × 1028 m−3 
Total cross-section for scattering of α-particles by Au σ = 1.48 × 10−25 m2  

Try thin foil approximation for thickness d=0.0005 m : 

Consider a section of foil of area A, the total number of Au atoms is nAd. 
Hence fraction of area blocked by Au atoms 

 fraction scattered = ndσ = 5.9 × 1028 × 1.48 × 10−25  × 5 × 10−4 = 4.3 

Hence thin foil approximation is not ok, so try thick film. 

 fraction transmitted = e-nσd  = 0.014 
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Nuclear sizes, mass and charge distribution 

•  Electron scattering experiments provide 
detailed information on nuclear structure  

•  Implication of electron scattering results: 
–  central charge density ≈ constant 

⇒ density of nucleons ~ constant 
and R = R0 A1/3 

•  Experimentally R0=1.23 fm  

ρnucleus ~ 1012 x normal matter 
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Mass spectrometer 
Determination of nuclide masses and abundances 

Key technology for determination of nuclide masses and 
abundances.  Four components: 
•  Ion source 
•  “velocity selector” only allows small range in v to pass through.  Relies 

on E and B fields producing forces in opposite directions. 
•  “momentum selector” - uniform magnetic field B2 separates ions by 

momentum and hence mass (since single value of velocity). 
•  Detector measures relative positions. 



PA322 

E 

detector 

velocity 
selector 

ion  
source momentum selector 

Mass spectrometer 
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Binding energy 

•  Binding energy of a nuclide        is difference between its mass 
energy and that of its constituent nucleons, ie. 

B = [ Z mp + N mn – { m(AX) – Zme } ] c2 

 XAZ

nucleons mass energy of nuclide 
= mass of atom minus 

mass of electrons 



PA322 Lecture 12 38 

Binding energy per nucleon as function of A 
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Stable nuclides are shaded black - even-even preferred, odd-odd very rare, due to pairing of nucleons. 
Line of stability deviates from one-to-one as more neutrons required in heavier nuclei to dilute the 

Coulomb repulsive force. 

Unstable (radioactive) nuclides are shaded grey. 

neutron rich 
(decay by beta emission) 

(decay by alpha emission) 
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Nuclear force 

Strong nuclear force between nucleons must overcome Coulomb 
repulsion on short scales: 

•  Hence attractive and short range. 
•  Explained by exchange of virtual mesons (and at a deeper level is a 

consequence of the colour force between quarks). 
•  Mass of meson (mπ c2 ≈ 100 MeV ) determines maximum range via Heisenberg 

UP. 
•  Complex in detail, so work with approximation schemes. 
•  Affects protons and neutrons equally, but spin dependent so nucleons “pair up”. 
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Liquid drop model and the semi-empirical 
mass formula (SEMF) 

•  The liquid drop model provides an approximate formula for the binding 
energy B(Z,A) for a nucleus with atomic number Z and mass number A 
–  Terms in equation motivated by theory, coefficients (a1,…, a5) from 

experiments. 
–  Particularly good when A is large. 
–  +ve terms increase binding energy and represent attractive forces etc. 

4
3

3
1

3
2

5

2

4321 ),()2()1(),( −− +
−

−−−−= AaAZ
A
ZAaAZZaAaAaAZB δ

Volume / Surface /        Coulomb        /      Symmetry      /           Pairing 
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Semi-empirical mass formula 

Volume term:  

•  Explanation: nuclear force has short range, each nucleon only 
experiences effect of its nearest neighbours  ⇒ contribution to 
binding energy thus scales directly with number of nucleons A, so 
is proportional to volume. 

Aa1

Surface term:  

•  Explanation: nucleons at the “surface” of the nucleus have fewer 
neighbours, this term thus effectively corrects the volume term. 
The surface area of a sphere ∝ R2, but as we know nuclei have 
radii R ∝ A1/3, the surface term ∝ A2/3  

3
2

2Aa−
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Semi-empirical mass formula 

Coulomb term:  

•  Explanation: the Coulomb term accounts for the electrostatic 
repulsion between the Z  protons in the nucleus. Each proton 
interacts with (Z-1) other protons (it doesn’t interact with itself). 

•  The potential energy for a sphere of charge Z and radius R can be 
shown to be ∝ Z(Z-1)/R, recalling R ∝ A1/3  

3
1)1(3

−−− AZZa
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Semi-empirical mass formula 

Symmetry term:  

•  Explanation: This term reflects the observed fact that light nuclei 
have N~Z. Exactly equal numbers of neutrons and protons gives 
minimum zero for this term. Factor 1/A means this effect becomes 
less important as A increases. 

•  Has origin in the Pauli Exclusion Principle applied to nucleons and 
the way that it effects the filling of nuclear shells in the shell 
structure of the nucleus. 

A
ZAa

2

4
)2( −

−
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Semi-empirical mass formula 

Pairing term:  

•  Explanation: term reflects pattern of Z, N values found in stable 
nuclei: even-even combination strongly preferred, followed by 
even-odd or odd-even combinations and very few odd-odd cases. 
Encapsulates spin-coupling effects in the nucleus. The factor             
is empirically determined  

•  Term is +ve for even-even combinations (i.e. increased binding 
energy). 

4
3

5),(
−AaAZδ

odd   ,  1
odd   0

even ,  1

NZ
A
NZ

−=

=

+=

δ

δ

δ

4
3−A
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Application of the  
Semi-empirical mass formula 

•  Values of coefficients (would be given if required in exam)   
a1=15.3 MeV a2=16.8 MeV a3=0.72 MeV a4=24 MeV a5=34 MeV  

•  Semi-empirical mass formula can be used to predict – via binding energies  
–  stability of isotopes 
–  energy changes in nuclear processes and reactions 


